Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.405
Filtrar
1.
Paediatr Respir Rev ; 35: 93-94, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32800451

RESUMO

Cystic fibrosis liver disease (CFLD) affects a large proportion of cystic fibrosis (CF) patients; however encephalopathy is a rare complication. While classical hepatic encephalopathy can be a feature of end-stage liver disease, "hyperammonemic encephalopathy" can be precipitated in previously stable CFLD by various triggers including systemic corticosteroids. We describe one such case and review the relevant literature.


Assuntos
Encefalopatias Metabólicas/metabolismo , Fibrose Cística/metabolismo , Hiperamonemia/metabolismo , Cirrose Hepática/metabolismo , Adolescente , Encefalopatias Metabólicas/etiologia , Encefalopatias Metabólicas/fisiopatologia , Confusão/etiologia , Confusão/fisiopatologia , Transtornos da Consciência/etiologia , Transtornos da Consciência/fisiopatologia , Fibrose Cística/complicações , Estado de Descerebração/etiologia , Estado de Descerebração/fisiopatologia , Encefalopatia Hepática/metabolismo , Encefalopatia Hepática/fisiopatologia , Humanos , Hiperamonemia/etiologia , Cirrose Hepática/etiologia , Masculino
2.
Am J Physiol Regul Integr Comp Physiol ; 319(2): R223-R232, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32609538

RESUMO

Purinergic 2X (P2X) receptors on the endings of group III and IV afferents play a role in evoking the exercise pressor reflex. Particular attention has been paid to P2X3 receptors because their blockade in the periphery attenuated this reflex. In contrast, nothing is known about the role played by P2X receptors in the spinal cord in evoking the exercise pressor reflex in rats. P2X7 receptors, in particular, may be especially important in this regard because they are found in abundance on spinal glial cells and may communicate with neurons to effect reflexes controlling cardiovascular function. Consequently, we investigated the role played by spinal P2X7 receptors in evoking the exercise pressor reflex in decerebrated rats. We found that intrathecal injection of the P2X7 antagonist brilliant blue G (BBG) attenuated the exercise pressor reflex (blood pressure index: 294 ± 112 mmHg·s before vs. 7 ± 32 mmHg·s after; P < 0.05). Likewise, intrathecal injection of minocycline, which inhibits microglial cell output, attenuated the reflex. In contrast, intrathecal injection of BBG did not attenuate the pressor response evoked by intracarotid injection of sodium cyanide, a maneuver that stimulated carotid chemoreceptors. Moreover, injections of BBG either into the arterial supply of the contracting hindlimb muscles or into the jugular vein did not attenuate the exercise pressor reflex. Our findings support the hypothesis that P2X7 receptors on microglial cells within the spinal cord play a role in evoking the exercise pressor reflex.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Condicionamento Físico Animal , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Reflexo/efeitos dos fármacos , Corantes de Rosanilina/administração & dosagem , Animais , Estado de Descerebração/fisiopatologia , Injeções Espinhais , Masculino , Minociclina/farmacologia , Ratos , Ratos Sprague-Dawley
3.
Artigo em Inglês | MEDLINE | ID: mdl-32174815

RESUMO

Background: The spinal cord's central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles. It is unknown whether a preferred model can explain some particularities that fictive scratching (FS) in the cat presents. The first aim of this study was to investigate FS patterns considering the aiming and the rhythmic periods, and second, to examine the effects of serotonin (5HT) on and segmental inputs to FS. Methods: The experiments were carried out first in brain cortex-ablated cats (BCAC), then spinalized (SC), and for the midcollicular (MCC) preparation. Subjects were immobilized and the peripheral nerves were used to elicit the Monosynaptic reflex (MR), to modify the scratching patterns and for electroneurogram recordings. Results: In BCAC, FS was produced by pinna stimulation and, in some cases, by serotonin. The scratching aiming phase (AP) initiates with the activation of either flexor or extensor motoneurons. Serotonin application during the AP produced simultaneous extensor and flexor bursts. Furthermore, WAY 100635 (5HT1A antagonist) produced a brief burst in the tibialis anterior (TA) nerve, followed by a reduction in its electroneurogram (ENG), while the soleus ENG remained silent. In SC, rhythmic phase (RP) activity was recorded in the soleus motoneurons. Serotonin or WAY produced FS bouts. The electrical stimulation of Ia afferent fibers produced heteronymous MRes waxing and waning during the scratch cycle. In MCC, FS began with flexor activity. Electrical stimulation of either deep peroneus (DP) or superficial peroneus (SP) nerves increased the duration of the TA electroneurogram. Medial gastrocnemius (MG) stretching or MG nerve electrical stimulation produced a reduction in the TA electroneurogram and an initial MG extensor burst. MRes waxed and waned during the scratch cycle. Conclusion: Descending pathways and segmental afferent fibers, as well as 5-HT and WAY, can change the FS pattern. To our understanding, the half-center hypothesis is the most suitable for explaining the AP in MCC.


Assuntos
Técnicas de Ablação , Córtex Cerebral/fisiologia , Estado de Descerebração/fisiopatologia , Nervos Periféricos/fisiologia , Reflexo Monosináptico/fisiologia , Medula Espinal/fisiologia , Técnicas de Ablação/métodos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/cirurgia , Gatos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/cirurgia , Estimulação Elétrica/métodos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/fisiologia , Nervos Periféricos/efeitos dos fármacos , Reflexo Monosináptico/efeitos dos fármacos , Serotonina/administração & dosagem , Antagonistas da Serotonina/administração & dosagem , Medula Espinal/efeitos dos fármacos , Medula Espinal/cirurgia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/fisiologia , Colículos Superiores/cirurgia
6.
Am J Physiol Regul Integr Comp Physiol ; 317(5): R641-R648, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31347922

RESUMO

The exercise pressor reflex is initiated by the contraction-induced activation of group III and IV muscle afferents. The reflex is manifested by increases in arterial blood pressure and cardiac output, which, in turn, are generated by increases in the sympathetic outflow to the heart and vasculature and decreases in the vagal outflow to the heart. In previous experiments, we used a pharmacological approach to assess the role played by the acid-sensing ion channel 3 (ASIC3) on group III and IV afferents in evoking the exercise pressor reflex. In the present experiments, we used an alternative approach, namely functional knockout (KO) of the ASIC3 gene, to confirm and extend our previous finding that pharmacological blockade of the ASIC3 had only a small impact on the expression of the exercise pressor reflex when the arterial supply to the contracting hindlimb muscles of rats was patent. Using this alternative approach, we compared the magnitude of the exercise pressor reflex evoked in ASIC3 KO rats with that evoked in their wild-type (WT) counterparts. We found both WT and ASIC3 KO rats displayed similar pressor responses to static contraction (WT, n = 10, +12 ± 2 mmHg; KO, n = 9, +11 ± 2 mmHg) and calcaneal tendon stretch (WT, n = 9, +13 ± 2 mmHg; KO, n = 7, +11 ± 2 mmHg). Likewise, both WT and ASIC3 KO displayed similar pressor responses to intra-arterial injection of 12 mM lactic acid (WT, n = 9, +14 ± 3 mmHg; KO, n = 8, +18 ± 5 mmHg), 24 mM lactic acid (WT, n = 9,+24 ± 2 mmHg; KO, n = 8, +20 ± 5 mmHg), capsaicin (WT, n = 9,+27 ± 5 mmHg; KO, n = 10, +29 ± 5 mmHg), and diprotonated phosphate ([Formula: see text]; WT, n = 6,+22 ± 3 mmHg; KO, n = 6, +32 ± 6 mmHg). We conclude that redundant receptors are responsible for evoking the pressor reflexes arising from group III and IV afferents.


Assuntos
Canais Iônicos Sensíveis a Ácido/deficiência , Extremidade Inferior/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Reflexo/fisiologia , Animais , Estado de Descerebração/genética , Estado de Descerebração/fisiopatologia , Contração Muscular/genética , Condicionamento Físico Animal/fisiologia , Esforço Físico/fisiologia , Ratos , Ratos Sprague-Dawley
7.
eNeuro ; 6(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31043462

RESUMO

There is evidence that a variety of central and afferent stimuli, including swallowing, can produce phase resetting in the respiratory rhythmicity. Also, there are reports about the intrinsic linkage between locomotion and respiration. However, little is known about the interaction between the central pattern generators (CPGs) for scratching and respiration. The present study aims to examine whether the activation of scratching CPG produces phase resetting of the respiratory rhythm. We employed decerebrate cats to apply brief tactile stimuli to the pinna during the inspiratory-expiratory transition. We observed that those stimuli to the pinna not eliciting fictive scratching did not reset the respiratory rhythm. However, when the pinna stimuli elicited fictive scratching, then the respiratory rhythm exhibited a significant phase resetting. We also found interneurons in the medulla oblongata exhibiting phase resetting related to scratching-CPG episodes. This second finding suggests that this type of resetting involves brainstem components of the respiratory CPG. These results shed new light on the resetting action from a spinal CPG on the respiratory rhythm.


Assuntos
Geradores de Padrão Central/fisiologia , Interneurônios/fisiologia , Bulbo/fisiologia , Periodicidade , Reflexo/fisiologia , Taxa Respiratória/fisiologia , Medula Espinal/fisiologia , Percepção do Tato/fisiologia , Animais , Gatos , Estado de Descerebração/fisiopatologia , Feminino , Masculino
8.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R727-R734, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943058

RESUMO

A reflex arising from contracting hindlimb muscle is responsible in part for the increases in arterial pressure and heart rate evoked by exercise. The afferent arm of this reflex comprises group III and IV afferents. δ-Opioid receptors are expressed predominately on the spinal endings of group III afferents, whereas µ-opioid receptors are expressed predominately on the spinal endings of group IV afferents. Using stimuli that activated group III afferents, namely static contraction, calcaneal tendon stretch, and lactic acid injection into the superficial epigastric artery, we tested the hypothesis that, in rats with either patent or ligated femoral arteries, activation of pre- and postsynaptic δ-opioid receptors in the dorsal horn attenuated pressor reflex responses to these stimuli. In rats with patent arteries or ligated femoral arteries, [d-Pen2,5]enkephalin (DPDPE), a δ-opioid agonist injected intrathecally (10 µg in 10 µl), significantly attenuated the pressor responses to contraction, stretch, and lactic acid (all P < 0.05). Naltrindole, a δ-opioid receptor antagonist, prevented the attenuation. In contrast, DPDPE did not attenuate the pressor response to capsaicin injection into the superficial epigastric artery in either group of rats (both P > 0.05). Intrathecal injection of saline (10 µl), the vehicle for DPDPE, had no effect on the pressor responses in either group of rats. We conclude that activation of spinal δ-opioid receptors attenuates reflexes evoked by group III afferents in both freely perfused and ligated rats.


Assuntos
D-Penicilina (2,5)-Encefalina/farmacologia , Condicionamento Físico Animal/fisiologia , Receptores Opioides delta/efeitos dos fármacos , Reflexo/fisiologia , Animais , Estado de Descerebração/fisiopatologia , Artéria Femoral/fisiopatologia , Frequência Cardíaca/fisiologia , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Esforço Físico/fisiologia , Ratos Sprague-Dawley , Receptores Opioides mu/efeitos dos fármacos
9.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R417-R426, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30840487

RESUMO

Recent findings have shown that muscle contraction evokes an exaggerated pressor response in type 1 diabetes mellitus (T1DM) rats; however, it is not known whether the mechanoreflex, which is commonly stimulated by stretching the Achilles tendon, contributes to this abnormal response. Furthermore, the role of mechano-gated Piezo channels, found on thin-fiber afferent endings, in evoking the mechanoreflex in T1DM is also unknown. Therefore, in male and female streptozotocin (STZ, 50 mg/kg)-induced T1DM and healthy control (CTL) rats, we examined the pressor and cardioaccelerator responses to tendon stretch during the early stage of the disease. To determine the role of Piezo channels, GsMTx-4, a selective Piezo channel inhibitor, was injected into the arterial supply of the hindlimb. At 1 wk after STZ injection in anesthetized, decerebrate rats, we stretched the Achilles tendon for 30 s and measured pressor and cardioaccelerator responses. We then compared pressor and cardioaccelerator responses to tendon stretch before and after GsMTx-4 injection (10 µg/100 ml). We found that the pressor (change in mean arterial pressure) response [41 ± 5 mmHg (n = 15) for STZ and 18 ± 3 mmHg (n = 11) for CTL (P < 0.01)] and cardioaccelerator (change in heart rate) response [18 ± 4 beats/min for STZ (n = 15) and 8 ± 2 beats/min (n = 11) for CTL (P < 0.05)] to tendon stretch were exaggerated in STZ rats. Local injection of GsMTx-4 attenuated the pressor [55 ± 7 mmHg (n = 6) before and 27 ± 9 mmHg (n = 6) after GsMTx-4 (P < 0.01)], but not the cardioaccelerator, response to tendon stretch in STZ rats and had no effect on either response in CTL rats. These data suggest that T1DM exaggerates the mechanoreflex response to tendon stretch and that Piezo channels play a role in this exaggeration.


Assuntos
Pressão Sanguínea/fisiologia , Diabetes Mellitus Experimental/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Contração Muscular/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Estado de Descerebração/fisiopatologia , Feminino , Membro Posterior/efeitos dos fármacos , Membro Posterior/fisiopatologia , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Ratos Sprague-Dawley , Reflexo/fisiologia
10.
Neurourol Urodyn ; 37(8): 2502-2509, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30070388

RESUMO

AIMS: Sacral spinal cord injury (SCI) could induce underactive bladder (UAB). Malfunction of connexin 43 (CX43) regulated by TGF-ß1 might involve in urinary bladder dysfunction. We studied the changes of CX43 and TGF-ß1/Smad3 signaling in detrusor of neurogenic bladder (NB) in sacral SCI rats. METHODS: Sacral SCI was produced by hemisection (SSCH) or transection (SSCT) of spinal cord between L4 and L5 in female Wistar rats. BBB scores, residual urine volume and bladder weight as well as characteristic cystometric parameters at 6th week were used to confirm the successful establishment of NB. Western blotting and qRT-PCR were used to exam the protein and mRNA expression levels of CX43, CX45, TGF-ß1, and Smad3 in detrusor. RESULTS: BBB scores were significantly decreased, with the lowest in SSCT rats (P < 0.01). The residual urine volume, mean bladder weight, and cystometric parameters were increased, with the highest in SSCT rats. CX43 and phospho-CX43 protein levels were significantly decreased, but those of TGF-ß1, Smad3, and phospho-Smad3 were significantly increased. It was the protein and mRNA levels of CX43 but not those of CX45 which were decreased in negative accordance with those of TGF-ß1 and Smad3. Those changes were more significant in SSCT than in SSCH rats. CONCLUSIONS: This study indicates that voiding dysfunction is related to the decreased CX43 function in detrusor from NB. TGF-ß1/Smad3 signaling might be involved in the down-regulation of CX43 in SCI rats. Early regulation of CX43 might be beneficial to patients with voiding dysfunction.


Assuntos
Conexina 43/biossíntese , Traumatismos da Medula Espinal/fisiopatologia , Fator de Crescimento Transformador beta1/biossíntese , Bexiga Urinaria Neurogênica/fisiopatologia , Animais , Conexina 43/genética , Estado de Descerebração/fisiopatologia , Feminino , Tamanho do Órgão , Ratos , Ratos Wistar , Proteína Smad3/biossíntese , Proteína Smad3/genética , Traumatismos da Medula Espinal/complicações , Fator de Crescimento Transformador beta1/genética , Bexiga Urinária/patologia , Bexiga Urinaria Neurogênica/etiologia , Urodinâmica
11.
Neurourol Urodyn ; 37(8): 2495-2501, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30024057

RESUMO

AIMS: To assess bladder smooth muscle function and innervation after long-term lower spinal root transection in canines. METHODS: Thirteen female mixed-breed hound dogs underwent bladder decentralization, which included transection of all sacral dorsal and ventral roots caudal to L7 and hypogastric nerves, bilaterally (n = 3); all sacral roots and hypogastric nerves plus transection of L7 dorsal roots, bilaterally (n = 4); or a sham operation (n = 6). At a year after initial surgery, bladder function was assessed in vivo by stimulation of the pelvic plexus. The bladder tissue was harvested for ex vivo smooth muscle contractility studies. Remaining bladder was evaluated for nerve morphology immunohistochemically using neuronal marker PGP9.5, apoptotic activity using terminal deoxynucleotidyl transferase dUTP nick end labeling, and histopathology using a hematoxylin and eosin stain. RESULTS: Sacral root decentralization did not reduce maximum strength of pelvic plexus stimulation-induced bladder contraction, although long-term sacral dorsal and ventral root plus L7 dorsal root transection significantly decreased contraction strength. Electric field stimulation-induced contractions of the detrusor from all decentralized animals were preserved, compared to controls. Viable nerves and intramural ganglia were visualized in the bladder wall, regardless of group. There was no difference in amount of apoptosis in bladder smooth muscle between groups. CONCLUSION: Bladder smooth muscle cells maintain their function after long-term bladder decentralization. While pelvic plexus-induced bladder contractions were less robust at 1 year after lower spinal root transection, the absence of atrophy and preservation of at least some nerve activity may allow for successful surgical reinnervation after long-term injury.


Assuntos
Estado de Descerebração/fisiopatologia , Músculo Liso/fisiopatologia , Bexiga Urinária/lesões , Bexiga Urinária/inervação , Animais , Cães , Estimulação Elétrica , Feminino , Plexo Hipogástrico/lesões , Marcação In Situ das Extremidades Cortadas , Contração Muscular , Músculo Liso/inervação , Regeneração Nervosa , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/fisiopatologia
12.
J Appl Physiol (1985) ; 125(3): 687-696, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771608

RESUMO

Spinal cord injury (SCI) at the level of cervical segments often results in life-threatening respiratory complications and requires long-term mechanical ventilator assistance. Thus restoring diaphragm activity and regaining voluntary control of breathing are the primary clinical goals for patients with respiratory dysfunction following cervical SCI. Epidural stimulation (EDS) is a promising strategy that has been explored extensively for nonrespiratory functions and to a limited extent within the respiratory system. The goal of the present study is to assess the potential for EDS at the location of the phrenic nucleus (C3-C5) innervating the diaphragm: the main inspiratory muscle following complete C1 cervical transection. To avoid the suppressive effect of anesthesia, all experiments were performed in decerebrate, C1 cervical transection, unanesthetized, nonparalyzed ( n = 13) and paralyzed ( n = 7) animals. Our results show that C4 segment was the most responsive to EDS and required the lowest threshold of current intensity, affecting tracheal pressure and phrenic nerve responses. High-frequency (200-300 Hz) EDS applied over C4 segment (C4-EDS) was able to maintain breathing with normal end-tidal CO2 level and raise blood pressure. In addition, 100-300 Hz of C4-EDS showed time- and frequency-dependent changes (short-term facilitation) of evoked phrenic nerve responses that may serve as a target mechanism for pacing of phrenic motor circuits. The present work provides the first report of successful EDS at the level of phrenic nucleus in a complete SCI animal model and offers insight into the potential therapeutic application in patients with high cervical SCI. NEW & NOTEWORTHY The present work offers the first demonstration of successful life-supporting breathing paced by epidural stimulation (EDS) at the level of the phrenic nucleus, following a complete spinal cord injury in unanesthetized, decerebrate rats. Moreover, our experiments showed time- and frequency-dependent changes of evoked phrenic nerve activity during EDS that may serve as a target mechanism for pacing spinal phrenic motor networks.


Assuntos
Medula Cervical/lesões , Espaço Epidural , Nervo Frênico , Respiração , Traumatismos da Medula Espinal/fisiopatologia , Animais , Pressão Sanguínea , Dióxido de Carbono , Estado de Descerebração/fisiopatologia , Estimulação Elétrica , Frequência Cardíaca , Masculino , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Músculos Respiratórios/inervação
13.
Neurourol Urodyn ; 37(4): 1302-1312, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29333621

RESUMO

AIM: To develop the decerebrate arterially perfused mouse (DAPM) preparation, a novel voiding model of the lower urinary tract (LUT) that enables in vitro-like access with in vivo-like neural connectivity. METHODS: Adult male mice were decerebrated and arterially perfused with a carbogenated, Ringer's solution to establish the DAPM. To allow distinction between central and peripheral actions of interventions, experiments were conducted in both the DAPM and in a "pithed" DAPM which has no brainstem or spinal cord control. RESULTS: Functional micturition cycles were observed in response to bladder filling. During each void, the bladder showed strong contractions and the external urethral sphincter (EUS) showed bursting activity. Both the frequency and amplitude of non-voiding contractions (NVCs) in DAPM and putative micromotions (pMM) in pithed DAPM increased with bladder filling. Vasopressin (>400 pM) caused dyssynergy of the LUT resulting in retention in DAPM as it increased tonic EUS activity and basal bladder pressure in a dose-dependent manner (basal pressure increase also noted in pithed DAPM). Both neuromuscular blockade (vecuronium) and autonomic ganglion blockade (hexamethonium), initially caused incomplete voiding, and both drugs eventually stopped voiding in DAPM. Intravesical acetic acid (0.2%) decreased the micturition interval. Recordings from the pelvic nerve in the pithed DAPM showed bladder distention-induced activity in the non-noxious range which was associated with pMM. CONCLUSIONS: This study demonstrates the utility of the DAPM which allows a detailed characterization of LUT function in mice.


Assuntos
Estado de Descerebração/fisiopatologia , Bexiga Urinária/fisiopatologia , Urodinâmica/fisiologia , Animais , Eletromiografia , Feminino , Masculino , Camundongos , Pressão , Uretra/fisiopatologia , Micção/fisiologia
14.
Am J Physiol Regul Integr Comp Physiol ; 313(4): R463-R472, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724548

RESUMO

Hindlimb skeletal muscle stretch (i.e., selective activation of the muscle mechanoreflex) in decerebrate rats evokes reflex increases in blood pressure and sympathetic nerve activity. Bradykinin has been found to sensitize mechanogated channels through a bradykinin B2 receptor-dependent mechanism. Moreover, bradykinin B2 receptor expression on sensory neurons is increased following chronic femoral artery ligation in the rat (a model of simulated peripheral artery disease). We tested the hypothesis that injection of bradykinin into the arterial supply of a hindlimb in decerebrate, unanesthetized rats would acutely augment (i.e., sensitize) the increase in blood pressure and renal sympathetic nerve activity during hindlimb muscle stretch to a greater extent in rats with a ligated femoral artery than in rats with a freely perfused femoral artery. The pressor response during static hindlimb muscle stretch was compared before and after hindlimb arterial injection of 0.5 µg of bradykinin. Injection of bradykinin increased blood pressure to a greater extent in "ligated" (n = 10) than "freely perfused" (n = 10) rats. The increase in blood pressure during hindlimb muscle stretch, however, was not different before vs. after bradykinin injection in freely perfused (14 ± 2 and 15 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.62) or ligated (15 ± 3 and 14 ± 2 mmHg for pre- and post-bradykinin, respectively, P = 0.80) rats. Likewise, the increase in renal sympathetic nerve activity during stretch was not different before vs. after bradykinin injection in either group of rats. We conclude that bradykinin did not acutely sensitize the pressor response during hindlimb skeletal muscle stretch in freely perfused or ligated decerebrate rats.


Assuntos
Bradicinina/farmacologia , Estado de Descerebração/fisiopatologia , Membro Posterior/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Reflexo/efeitos dos fármacos , Animais , Barorreflexo/efeitos dos fármacos , Barorreflexo/fisiologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Membro Posterior/fisiopatologia , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Ratos , Ratos Sprague-Dawley , Reflexo/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/fisiopatologia
15.
Auton Neurosci ; 206: 63-66, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28579284

RESUMO

This study examined the site of main integration center in the physical stress-induced inhibition of ovarian estradiol secretion because of ovarian sympathetic nerve (superior ovarian nerve: SON) activation in anesthetized rats. In central nervous system-intact rats, electrical stimulation of the tibial afferent nerve at 10V increased the efferent activity of the SON by 39±13% and reduced the ovarian secretion of estradiol by 34±7%. These responses were observed in decerebrate rats but were abolished in spinal rats. Thus, the main integration center for this ovarian hormonal response is located in the brain stem.


Assuntos
Tronco Encefálico/fisiologia , Estradiol/metabolismo , Ovário/inervação , Ovário/metabolismo , Estresse Fisiológico/fisiologia , Sistema Nervoso Simpático/fisiologia , Vias Aferentes/fisiologia , Anestesia , Animais , Estado de Descerebração/fisiopatologia , Vias Eferentes/fisiologia , Estimulação Elétrica , Feminino , Ratos Wistar , Transmissão Sináptica , Nervo Tibial/fisiologia
16.
J Neurosci Methods ; 288: 99-105, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28648715

RESUMO

BACKGROUND: Genetic techniques rendering murine models a popular choice for neuroscience research has led to important insights on neural networks controlling locomotor function. Using genetically altered mouse models for in vivo, electrophysiological studies in the adult state could validate key principles of locomotor network organization that have been described in neonatal, in vitro preparations. NEW METHOD: The experimental model presented here describes a decerebrate, in vivo adult mouse preparation in which focal, electrical midbrain stimulation was combined with monitoring lumbar neural activity and motor output after pre-collicular decerebration and neuromuscular blockade. RESULTS: Lumbar cord dorsum potentials (in 9/10 animals) and motoneuron output (in 3/5 animals) including fictive locomotion, was achieved by focal midbrain stimulation. The stimulation electrode locations could be reconstructed (in 6/7 animals) thereby allowing anatomical identification of the stimulated supraspinal regions. COMPARISON WITH EXISTING METHODS: This preparation allows for concomitant recording or stimulation in the spinal cord and in the mid/hindbrain of adult mice. It differs from other methods used in the past with adult mice as it does not require pharmacological manipulation of neural excitability in order to generate motor output. CONCLUSIONS: Midbrain stimulation can consistently be used for inducing lumbar neural activity in adult mice under neuromuscular blockade. This model is suited for examination of brain-spinal connectivity and it may benefit a wide range of fields depending on the features of the genetically modified mouse models used in combination with the presented methods.


Assuntos
Estado de Descerebração/fisiopatologia , Potenciais Evocados/fisiologia , Mesencéfalo/fisiopatologia , Neurônios Motores/fisiologia , Vias Neurais/fisiopatologia , Medula Espinal/fisiopatologia , Animais , Estimulação Elétrica , Região Lombossacral , Camundongos , Atividade Motora/fisiologia
17.
Exp Neurol ; 293: 181-189, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28433644

RESUMO

Impaired breathing is a devastating result of high cervical spinal cord injuries (SCI) due to partial or full denervation of phrenic motoneurons, which innervate the diaphragm - a primary muscle of respiration. Consequently, people with cervical level injuries often become dependent on assisted ventilation and are susceptible to secondary complications. However, there is mounting evidence for limited spontaneous recovery of respiratory function following injury, demonstrating the neuroplastic potential of respiratory networks. Although many studies have shown such plasticity at the level of the spinal cord, much less is known about the changes occurring at supraspinal levels post-SCI. The goal of this study was to determine functional reorganization of respiratory neurons in the medulla acutely (>4h) following high cervical SCI. Experiments were conducted in decerebrate, unanesthetized, vagus intact and artificially ventilated rats. In this preparation, spontaneous recovery of ipsilateral phrenic nerve activity was observed within 4 to 6h following an incomplete, C2 hemisection (C2Hx). Electrophysiological mapping of the ventrolateral medulla showed a reorganization of inspiratory and expiratory sites ipsilateral to injury. These changes included i) decreased respiratory activity within the caudal ventral respiratory group (cVRG; location of bulbospinal expiratory neurons); ii) increased proportion of expiratory phase activity within the rostral ventral respiratory group (rVRG; location of inspiratory bulbo-spinal neurons); iii) increased respiratory activity within ventral reticular nuclei, including lateral reticular (LRN) and paragigantocellular (LPGi) nuclei. We conclude that disruption of descending and ascending connections between the medulla and spinal cord leads to immediate functional reorganization within the supraspinal respiratory network, including neurons within the ventral respiratory column and adjacent reticular nuclei.


Assuntos
Mapeamento Encefálico , Diafragma/fisiopatologia , Plasticidade Neuronal/fisiologia , Centro Respiratório/fisiopatologia , Traumatismos da Medula Espinal/complicações , Potenciais de Ação/fisiologia , Animais , Medula Cervical , Estado de Descerebração/fisiopatologia , Modelos Animais de Doenças , Lateralidade Funcional , Masculino , Neurônios/fisiologia , Nervo Frênico/lesões , Nervo Frênico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Centro Respiratório/patologia , Simpatectomia Química , Fatores de Tempo
18.
J Appl Physiol (1985) ; 121(4): 932-943, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539494

RESUMO

Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade.


Assuntos
Barorreflexo , Pressão Sanguínea , Geradores de Padrão Central , Estado de Descerebração/fisiopatologia , Frequência Cardíaca , Movimento , Sistema Nervoso Simpático/fisiopatologia , Animais , Relógios Biológicos , Gatos , Retroalimentação Fisiológica
19.
J Intensive Care Med ; 31(9): 622-4, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27170657

RESUMO

INTRODUCTION: Criteria for establishing brain death (BD) require absence of all brainstem-mediated reflexes including motor (ie, decerebrate or decorticate) posturing. A number of spinal cord automatisms may emerge after BD, but occurrence of decerebrate-like spinal reflexes may be particularly problematic; confusion of such stereotypic extension-pronation movements with brain stem reflexes may confound or delay definitive diagnosis of BD. We present a case in which we verified the noncerebral (ie, likely spinal) origin of such decerebrate-like reflexes. METHODS: Case report and systematic review of literature. RESULTS: A 63-year-old woman presented with large pontine hemorrhage and complete loss of cerebral function, including no motor response to pain. Apnea testing confirmed death by neurologic criteria. Thirty-six hours after BD declaration, during assessment for organ donation, she began to exhibit spontaneous and stimulus-induced stereotypic extension-pronation of the upper extremities. The similarity of these movements to decerebrate posturing prompted concern for retained brain stem function, but repeat neurological examination of cranial nerves and apnea testing did not reveal any cerebral responses. Electrocerebral silence on electroencephalogram and absent perfusion on nuclear medicine brain imaging further confirmed BD. Review of PubMed yielded 5 additional case reports and 4 cohorts describing cases of decerebrate-like extension-pronation movements presenting in a delayed fashion after BD. CONCLUSION: Extension-pronation movements that mimic decerebrate posturing may be seen in a delayed fashion after BD. Verification of lack of any brain activity (by both examination and multiple ancillary tests) in this case and others prompts us to attribute these movements as spinal cord reflexes and propose they be recognized within the rubric of accepted post-BD automatisms that should not delay diagnosis or necessitate confirmatory testing.


Assuntos
Morte Encefálica/fisiopatologia , Tronco Encefálico/fisiopatologia , Estado de Descerebração/fisiopatologia , Exame Neurológico/métodos , Nervos Espinhais/fisiopatologia , Estado de Descerebração/diagnóstico , Eletroencefalografia , Feminino , Humanos , Pessoa de Meia-Idade , Contração Muscular , Obtenção de Tecidos e Órgãos
20.
Fiziol Zh (1994) ; 62(2): 41-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-29537224

RESUMO

We studied the serotonin effect on monosynaptic reflex potentials (MSR) of spinal motorneurons in the decerebrated rats in control and after intraperitoneal administration of serotonin precursor ­ 5-Hydroxytryptophan (5-HTP). MSR of motorneurons in the lumbar spinal cord were registered using electrical stimulation of dorsal root of the 5th lumbar section. During stimulation physiological saline or 5-hydroxytryptophan was injected intraperitoneally. In comparison with average amplitude of the control MSR there were registered significant increase in amplitudes of the MSR (169% and +172%, P <0,001) in animals with injection 5-HTP. These data suggest that serotonin release after 5-HTP administration leads to activation of motorneurons in the lumbar spinal cord. The mechanism of this activation may be related to the weakening of the inhibitory control of interneurons in the transmission pathways of the excitatory influences from muscle afferent to motorneurons and to the postural (antigravity) reflex reactions which necessary for the initiation of locomotion.


Assuntos
5-Hidroxitriptofano/farmacologia , Estado de Descerebração/fisiopatologia , Interneurônios/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Reflexo Monosináptico/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Animais , Estado de Descerebração/metabolismo , Estimulação Elétrica , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/fisiopatologia , Injeções Intraperitoneais , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Ratos , Ratos Wistar , Serotonina/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...